Bishop Berkeley writes this attack on the apparent supernatural reasoning involved in calculus. The infidel was probably Halley (of comet fame) or Newton.

If pupils find the subject difficult to understand at school, and teachers find it difficult to teach, then the reason may be articulated in this book by the great man.

Quotes include:

*“Now to conceive a Quantity infinitely small, that is, infinitely less than any sensible or imaginable Quantity, or any the least finite Magnitude, is, I confess, above my Capacity. But to conceive a Part of such infinitely small Quantity, that shall be still infinitely less than it, and consequently though multiply’d infinitely shall never equal the minutest finite Quantity, is, I suspect, an infinite Difficulty to any Man whatsoever”*

and.

*“They are neither finite Quantities nor Quantities infinitely small, nor yet nothing. May we not call them ***the Ghosts of departed Quantities**?”

Some sympathy for the thesis is gained by Berkeley’s examination of tangent reasoning:

*“Therefore the two errors being equal and contrary destroy each other; the first error of defect being corrected by a second error of excess. ……. If you had committed only one error, you would not have come at a true Solution of the Problem. But by virtue of a twofold mistake you arrive, though not at Science, yet at Truth. For Science it cannot be called, when you proceed blindfold, and arrive at the Truth not knowing how or by what means.”*

The student of sixth form level mathematics who is eager to see how this is resolved must continue their path to mathematical enlightenment by studying the Analysis of Cauchy, Riemann and Weierstrass.

### Like this:

Like Loading...

*Related*