geometry

t-Formulae and parameterisation of the circle

t-Formulae are used in integration to tackle rational expressions of tigonometric functions.  After a spell in the cold, when they were not included in some A level specifications, they are now back in sixth form lessons. It all starts with the subsitution, from which the following functions can be derived, ,  ,  . These derivations …

t-Formulae and parameterisation of the circle Read More »

Parallelograms generalise Pythagoras to any triangle

There’s always space on the inter-web for another proof of Pythagoras’s Theorem.  Here’s one that uses the following equal areas property of parallelograms. This kind of area chopping and shape translation is a feature of Euclidean geometry and our senses support it’s veracity at the order of size of the classroom. The squares on the …

Parallelograms generalise Pythagoras to any triangle Read More »

This method for finding the centre, and by extension the equation, of a circle given three non-colinear points, brings the ancient textbook master Euclid onto Descartes’ coordinate plane and right  into the 21 century classroom. 

jpedmaths: Angles in the same segment are equal. A reminder for my IGCSE students.  Name the theorem correctly; even though you might understand the maths, ‘donkey’s ears’ is not an exam sufficient tag.